Velocity profiles within thin viscoplastic surges: elucidating the transition layer

Guillaume Chambon¹, Perrine Freydier², Jean-Paul Vila³

¹Univ. Grenoble Alpes, IRSTEA, ETNA Research Unit, Grenoble, France ²FAST, Univ. Paris Sud, CNRS, Univ. Paris Saclay, Orsay, France ³Institut de Mathématiques de Toulouse, Univ. Toulouse, CNRS, INSA, Toulouse, France guillaume.chambon@irstea.fr

Thin flows of viscoplastic fluids down inclines are characterized by the existence of a pseudo-plug layer, close to the free surface, in which the shear rate is null at leading order in aspect ratio ϵ . Recently, comparisons between asymptotic predictions and highly-resolved experimental measurements of the velocity field within gravity-driven surges of Herschel-Bulkley fluids, showed that first-order corrections in ϵ are essential to capture the evolution of velocity and shear rate close to the tip [1]. These correction terms are responsible, in particular, for a strong increase of the shear rate toward the tip, a feature clearly seen in the experimental data. However, regular asymptotic expansions of the velocity profiles at order $O(\epsilon)$ display an unphysical kink at the location of the fake yield surface, which prevents direct comparisons with experimental measurements. To overcome this limitation, a proper matching between the pseudo-plug and the sheared layer needs to be worked out, connecting the two zones over a transition layer in which both viscous and plastic contributions to stress are of the same order. Though the existence of this transition layer was anticipated in previous studies [2], construction of the complete velocity profiles was yet to be performed. We will present the derivation of a uniform velocity approximation, up to order $e^{\frac{2(n+1)}{n+2}}$, for a Herschel-Bulkley fluid with a power index n. The width of the transition layer scales as $e^{\frac{2\pi i}{n+2}}$, and thus becomes increasingly prominent as n decreases. The obtained asymptotic velocity profiles will be compared to experimental data for various values of the flow parameters (Froude and Herschel-Bulkley numbers), and the influence of correction terms associated to the transition layer will be discussed. Finally, implications for the formulation of consistent shallow-flow models will be

presented.

Presentation preference: oral

References

[1] Freydier P., Chambon G., Naaim M., J.-P. Vila. Asymptotic expansion of velocity field within the front of viscoplastic surges: comparison with experiments. *J. Fluid Mech.*, subm., 2019. (hal-01865576>)

[2] Balmforth N.J., Craster R.V. A consistent thin-layer theory for Bingham plastics. *J. Non-Newton. Fluid Mech.*, 84, 65-81, 1999.