skip to content

Department of Chemical Engineering and Biotechnology

Fluorescent Shell Localisation in Therapeutic Bacteria Spores

On the front cover of the Biophysical Journal for 17 November, CEB researchers present an analytical method to measure the structure of protein layers in bacterial spore coats. This will assist a joint project with MedImmune on the use of live edible bacteria for drug delivery.

Micro-organisms such as bacteria and viruses frequently have a multi-layered protein shell, often containing 50 or more distinct proteins in a shell less than 100 nm thick. Distinguishing the order of protein layers can reveal the morphogenetic plan of the microbe, and hence shed light on the function of different proteins - for example, which proteins form the outermost layers that protect a bacterial spore from lytic enzymes in the environment, and which hold the structure together? The only practical method for non-invasively identifying specific proteins in these specimens is to use fluorescent fusion proteins and fluorescence microscopy. However conventional fluorescence microscopy lacks the resolution to resolve adjacent protein layers. Eric Rees and Graham Christie, have pioneered a method of Ellipsoid Localisation Microscopy (ELM) which is able to measure protein layer separation. The principle of the method is to derive a mathematical model for the image of a spherical (or ellipsoidal) fluorescent shell, and fit its parameters to fluorescent micrograph data, enabling shell size to be inferred very precisely. The fitted parameters can also be fed back into the image model to generate a reconstructed image of the spores. 

The method itself has wide applications, and is the first example of a set of Fluorescent Shell Localisation methods being developed at CEB. In future work, Fluorescent Shell Localisation will be used to optimise the structure of bacteria strains being developed for therapeutic drug delivery, in a joint project with MedImmune. Nonlinear optimisation techniques, also a key interest at CEB, may also be developed to speed up the image analysis. 

Related Links

Biophysical Journal blog entry

Biophysical Journal paper doi: 10.1016/j.bpj.2015.09.023 

Latest news

Dr Sam Stranks awarded Philip Leverhulme Prize in Physics

18 October 2021

Dr Sam Stranks, who leads our Optoelectronics and Device Spectroscopy Group, has been awarded the 2021 Philip Leverhulme Prize in Physics...

Multi-million-pound centre at the heart of the digital chemistry revolution appoints UK experts to new advisory board

27 September 2021

The Innovation Centre in Digital Molecular Technologies, a multi-million-pound project based at the University of Cambridge, has appointed an External Advisory Board of leading UK experts that will align the centre with both national interests and local priorities in the digital chemistry sector.

Cambridge leads multidisciplinary team in development of a simulator to accelerate the path to net zero flight

27 August 2021

Researchers from CEB will play a key role in the Aviation Impact Accelerator, an international group of experts in aerospace, economics, policy, and climate science, who are developing an interactive evidence-based simulator that explores scenarios for achieving net zero flight.