Chemical Engineering Tripos Michaelmas Term 2017

Lectures are normally 50 minutes duration. Numbers in square brackets [] indicate week numbers

Week	Date			9.05 am		Room	10.00 am		Room		11.10 am		Room	12.05 pm		Room	Afternoon		Room	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 9 \text { Oct } \\ & 16 \text { Oct } \\ & 23 \text { Oct } \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathbf{O} \end{aligned}$	cet				Intro Fluids [1-8]	MEW	LT1		Laboratory Practical [1-8] Computing Skills [1-8]	$\begin{aligned} & \text { SAB } \\ & \text { vsv } \end{aligned}$	$\begin{gathered} \text { Lab } \\ \text { cs } \end{gathered}$	Laboratory Practical [1-8] Computing Skills [1-8]	$\begin{aligned} & \text { SAB } \\ & \text { vsv } \end{aligned}$	$\begin{gathered} \mathrm{Lab} \\ \mathrm{cs} \end{gathered}$				cet
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	30 Oct 6 Nov 13 Nov	N D A	cet				Bioprocessing [1-4] Statistics [5-8]	$\begin{aligned} & \text { GC } \\ & \text { PJB } \end{aligned}$	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \end{aligned}$		Corrosion/Materials [1-4] Corrosion/Materials [5-8]	$\begin{aligned} & \text { EJR } \\ & \text { JAZ } \end{aligned}$	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \end{aligned}$	Separations [1-5] Process Synthesis [6-8]	LTM MEW	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \end{aligned}$				CET
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	20 Nov 27 Nov		cet				Advanced Transport [1- 81	JSD	LT3		PhD opportunities [1] Energy Technology [2-4] Energy Technology [5-8]	xx PJB CdA	$\begin{aligned} & \text { LT1 } \\ & \text { LT1 } \\ & \text { LT1 } \end{aligned}$	Rheology [1-8]	$\begin{aligned} & \mathrm{BH} / \\ & \mathrm{CJN} \end{aligned}$	LT1				Cet
1	$\begin{array}{ll} 10 & \text { Oct } \\ 17 & \text { Oct } \\ 24 & \text { Oct } \end{array}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{U} \end{aligned}$	cet	Exercise [2-7]		LT1	Intro Chem Eng [1-2] Intro Chem Eng [3-5] Homogen Reactors [6-8]	BH JAZ CdA	LT1 LT1 LT1		Process Calcs [1-8]	AFR	LT1	§1. Eng Drawing [1] §1. Engineering [2-3] \$1. Enaineerina $[4-7]$ §2. Chemistry [2-4] §2. Chemistrv [5-7]	KY ACF AJS MDM ACF	LT1 LT1 LT2				cet
4	31 Oct 7 Nov 14 Nov	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{D} \end{aligned}$	cet				PD\&C [1-8]	AZ	LT2		Het Reactors [1-8]	PJB	LT2	Ethics [1] Exercise [3-5]	LF	$\begin{gathered} \text { LT2 } \\ \text { CS } \end{gathered}$				Cet
7	21 Nov 28 Nov	$\begin{aligned} & \mathbf{A} \\ & \mathbf{Y} \end{aligned}$	cet	CFD tutorial [1-7]	MEW	CS	CFD tutorial [1-7]	MEW	CS		Fluid Mech \& Env [1-8]	SSSC	LT3	Optimisation [1-8]	vsv	LT3				CET
$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 11 \text { Oct } \\ & 18 \text { Oct } \\ & 25 \text { Oct } \end{aligned}$	$\begin{gathered} \mathbf{W} \\ \mathbf{E} \\ \mathbf{D} \end{gathered}$	cet				Intro Fluids [1-8]	MEW	LT1	$\begin{gathered} 11 \mathrm{a} \\ \mathrm{~m} \end{gathered}$	Laboratory Practical [1-8] Computing Skills [1-8]	$\begin{aligned} & \text { SAB } \\ & \text { vsv } \end{aligned}$	$\begin{gathered} \text { Lab } \\ \text { cs } \end{gathered}$	Laboratory Practical [1-8] Computing Skills [1-8]	$\begin{aligned} & \text { SAB } \\ & \text { vsv } \end{aligned}$	$\begin{gathered} \text { Lab } \\ \text { CS } \end{gathered}$				CET I
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	1 Nov 8 Nov 15 Nov	$\begin{aligned} & \mathrm{N} \\ & \mathrm{E} \\ & \mathrm{~S} \end{aligned}$	cet				Bioprocessing [1-4] Statistics [5-8]	$\begin{aligned} & \text { GC } \\ & \text { PJB } \end{aligned}$	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \end{aligned}$		Corrosion/Materials [1-4] Corrosion/Materials [5-8]	$\begin{aligned} & \text { EJR } \\ & \text { JAZ } \end{aligned}$	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \end{aligned}$	Separations [1-5] Process Synthesis [6-8]	LTM MEW	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \end{aligned}$				CET
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	22 Nov 29 Nov	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \\ & \mathbf{Y} \\ & \hline \end{aligned}$	cet				Interface Eng [1-8]	DIW	LT3		Energy Technology [1-4] Energy Technology [5-8]	$\begin{aligned} & \text { PJB } \\ & \text { CdA } \end{aligned}$	$\begin{aligned} & \text { LT1 } \\ & \text { LT1 } \end{aligned}$	Rheology [1-8]	$\begin{aligned} & \mathrm{BH} / \\ & \text { CJN } \end{aligned}$	LT1				CET
2 3	5 Oct 12 Oct 19 Oct	$\begin{aligned} & \mathrm{T} \\ & \mathbf{H} \\ & \mathbf{U} \end{aligned}$	cet				Intro Chem Eng [1-3] Intro Chem Eng [4-6] Homogen Reactors [7-8]	BH JAZ CdA	LT1 LT1 LT1		Process Calcs [1-8]	AFR	LT1	Report writing [1] §1. Engineering [2-3] \$1. Enaineerina [4-7] §2. Chemistry [2-5] \$2. Chemistrv [6.7]	SLR ACF AJS MDM ACF	LT1 LT1 LT2	§1. Engineering Drawina [2-61 2-5 pm §2. Physical Chemistry Lab [2-61 2-4 pm			${ }_{\text {cet }}$
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	26 Oct 2 Nov 9 Nov	$\begin{aligned} & \text { R } \\ & \mathbf{S} \\ & \mathrm{D} \end{aligned}$	cet	Course Introduction		LT2	PD\&C [1-8]	AZ	LT2		Het Reactors [1-8]	PJB	LT2	Ethics [1]	LF	LT2				CEt
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	16 Nov 23 Nov	$\begin{aligned} & \mathbf{A} \\ & \mathbf{Y} \end{aligned}$	cer	CFD [1-4]	MEW	LT1	Advanced Transport [181	JSD	LT3		Chem Prod Design [1-8]	$\stackrel{\mathrm{LF} / \mathrm{G}}{\mathrm{C}}$	LT3	Chem Prod Design [1-8]	$\underset{\mathrm{C}}{\mathrm{LF} / \mathrm{G}}$	LT3				CET
1 2 3	$\begin{aligned} & 6 \text { Oct } \\ & 13 \text { Oct } \\ & 20 \text { Oct } \end{aligned}$	$\begin{aligned} & F \\ & R \end{aligned}$	$\mathrm{cer}^{\text {cet }}$				Intro Chem Eng [1-3] Intro Chem Eng [4-5] Homogen Reactors [6-8]	BH JAZ CdA	LT1 LT1 LT1		Process Calcs [1-8]	AFR	LT1	Error analysis [1] §1. Engineering [2-3] \$1. Engineering [4-7] §2. Chemistry [2-4] \$2. Chemistry [5-7]	PJB ACF AJS MDM ACF	LT1 LT1 LT2				CET I
4	27 Oct 3 Nov 10 Nov	$\begin{aligned} & \mathrm{I} \\ & \mathbf{D} \\ & \mathbf{A} \end{aligned}$	cet				Bioprocessing [1-4] Statistics [5-8]	$\begin{aligned} & \text { GC } \\ & \text { PJB } \end{aligned}$	$\begin{aligned} & \text { LT2 } \\ & \text { LT2 } \\ & \hline \end{aligned}$		Separations [1-6] Process Synthesis $[7,8]$	LTM MEW	$\begin{aligned} & \mathrm{LT} 2 \\ & \mathrm{LT} 2 \\ & \hline \end{aligned}$	Ethics [1] Exercise [3-8]	LF	$\begin{aligned} & \text { LT2 } \\ & \text { CS } \end{aligned}$				CEt
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	17 Nov 24 Nov	\mathbf{Y}	cer	CFD [1-4]	MEW	LT1	Interface Eng [1-8]	DIW	LT3		Fluid Mech \& Env [1-8]	SSSC	LT3	Optimisation [1-8]	vsv	LT3	Safety training [1] 2-5 pm Chem Product Design [2-71 2-4 pm; [8] 2-5 pm	$\begin{aligned} & \mathrm{SDC} \\ & \mathrm{LF} / \mathrm{G} \\ & \mathrm{C} \end{aligned}$	LT3 LT1	CET
				9.05 am		Room	10.00 am		Room		11.10 am		Room	12.05 pm		Room	Afternoon		Room	

$\mathbf{L T} 1=$ lecture theatre $1 ; \mathbf{L T} \mathbf{2}=$ lecture theatre $2 ; \mathbf{L T} \mathbf{3}=$ lecture theatre 3
Lab = Teaching Laboratory ; CS = Computer Suite

