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“Optimization is the science of finding “Optimization is the science of finding 
the best solution”the best solution”

Roger Fletcher, Roger Fletcher, 
Practical Methods of Optimization, Practical Methods of Optimization, 

John Wiley & Sons, (2000).John Wiley & Sons, (2000).
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1. Optimization problem statement
2. Convexity and nonlinearity
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4. The “curse of dimensionality”
5. Generalised optimization problems
6. Important modern algorithms
7. Derivative-free optimization
8. Conclusions
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“Make things as simple as possible, but not 
simpler.” 

Albert Einstein, 1930’s 6

1. Optimization problem 
statement
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• Objective function:

• Equality constraints 

)(maxor min xf
xx

0)( =xh

• Inequality constraints

• Simple bounds
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• General Mathematical Programming Problem (MP)
• If all variables are continuous, 

Nonlinear Programming Problem (NLP)
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• Objective: usually an economic criterion
– Minimum cost
– Maximum profit, revenue

• Equality constraints
– Modelling equations: LAE’s, NLAE’s, ODE’s, 

PDE’s

• Inequality constraints
– Operating limitations
– Quality control

• Bounds
– Implied by inequality constraints
– Usually arise naturally from the problem 

definition

9

2. Convexity and nonlinearity

10

• Nonlinearity, wherever it arises
– Complicates solution
– But in itself is not the most important 

complicating factor

• Nonconvexity of the objective and/or of 
the constraint set
– Serious complication in practical applications
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• Convex functions
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• Nonconvex functions
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• A convex function is 
always overestimated 
by its chord
– For minimization it is a 

guarantee of solution 
uniqueness

• A concave function is 
underestimated by its 
chord
– For maximimization it is a 

guarantee of solution 
uniqueness
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• For all optimization 
problems we want 
the constraints to 
define a convex set

– A convex set 
contains all the points 
of the line connecting 
two of its points

– i.e. it contains 
weighted averages of 
points!
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• Even if the objective is convex (for min), if the 
constraints are nonconvex � multiple minima
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• So what can we solve?
• Many things, even non-differentiable 

problems, but…
• General NLP will have no certificate of 

global optimality
• Special algorithms for general problems 

exist
– Certificate of global optimality comes at high 

cost
• Long computation times, smaller problems

• Convex Programming Problem
– The only one that has a certificate of global 

optimality
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• Convex Programming Problem:

• Only one solution: the global one
• Solved in polynomial time (1995 proof)
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3. Variable Types



4

19

• Typical case is where variables belong to 
the real set of continuous numbers, RN

• In many applications of engineering 
interest the variables are integers
– A special case is binary variables, 

• used to encapsulate boolean operations (absence 
of presence of a unit, on/off operations, etc.)

• Variables (arguments) are functions --
later

20
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4. The “curse of dimensionality”
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“It is a scale of proportions which makes the 
bad difficult and the good easy .” 

Albert Einstein, 1946
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• If we assign 10 
intervals for each 
variable

• With 100 variables
• Evaluating once the 

function in each 
compartment means

• 10100 function 
evaluations

• A bad algorithm, runs 
in exponential time

24

4.1 Information density ‘dilution’ 
with dimensionality

• Function f(x)
• In 1-D, interval of 

interest ∆
• A single point, 

characterises an 
interval δ < ∆

• with maximum 
deviation ε in the 
function value
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• If the same values hold for many dimensions then
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• Fraction of hyper-volume characterised by a 
single function evaluation is

• As, 

• Then the fraction decays exponentially with the 
number of dimensions

• Or, conversely, we need an exponential number 
of evaluations to characterise a percentage of 
the search volume
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4.2 The probability of satisfying 
constraints with random sampling

• 2-D feasible region, for example
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• difficult with random 
sampling methods to 
get a point within 
arbitrary feasible 
regions

• find an outer 
bounding box 
containing the region

• sample uniformly 
points from within it
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1. If the point is feasible,

2. And if it improves the objective

3. We keep it,

4. Else, we pick a new random point,
– Go To step 1

• Will this algorithm work for any dimensions?

30

• For simplicity, 
consider a square 
feasible region, of 
side (s-ε)

• bounded within an 
outer square 
sampling box, 
of side s
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• The probability of finding a point within the inner 
square, is equal to the ratio of the two hyper-
volumes:

• Which again decays exponentially,     
– even  if  ε/s << 1

• Higher dimensional objects have all of their 
volume near the surface!
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• For ε/s = 10-3 we 
obtain the 
following figure

• For example, for 
N=10,000 
P=0.000045

• Finding a single 
feasible point 
requires an 
exponential 
number of trials!
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• Generating points within a convex feasible 
set is generally not a problem

• Easy if problem is defined by convex 
inequalities

• Randomized methods can work

• Generating points in nonconvex sets can 
be an issue

34

4.3 Faster computers?

• Will faster computers be the answer to 
addressing the problems of high 
dimensionality?

• Computer chips double speed (transistors) 
every 2 years (Moore’s Law)

35From Wikipedia 36

• Even if Moore’s law does not saturate (predicted 
by 2020),

• Doubling the speed of a computer every 2 years,

• For an exponential complexity of O(2N) 
operations for a problem of N variables,

• This means we will be able to solve a problem of 
N+1 variables
– In the same time we solved the smaller problem, 2 

years before!

• As we will see, there are fortunately special 
algorithms to deal with combinatorial problems
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5. Generalised optimization 
formulations

38

“Most of the fundamental ideas of science are 
essentially simple, and may, as a rule, be 

expressed in a language comprehensible to 
everyone .” 

Albert Einstein

39

• We shall consider next some generalised 
formulations

• The NLP we introduced on the first slide 
sets the general format

• The scope of optimization models can be 
widened to capture problems of significant 
interest in industry and research

40

5.1 Optimal Control Problems 
(OCP)

• The case where we are looking for control 
functions

• State responses are also functions

• � infinite dimensional optimization 
problems

• Best shown first by example

41

5.1.1 Bifunctional catalyst PFR

• A catalytic tubular reactor design problem, in 
hydrocarbon processing

• using a bi-functional catalyst blend along its 
length, 

• the task is to find the optimal catalyst blend,

• to maximise the yield of a desired product at the 
outlet of the reactor

42
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5.1.2 Parameterization methods

• Use of parameterization is made so as to make 
the problems finite dimensional NLP’s

• Either parameterize control functions only,
– Control vectror parameterization method (CVP)

• Or parameterize controls and state variables 
simultaneously
– Simultaneous approach, using collocation over finite 

elements

44

45 46

47

• Example: given a dynamic flow sheet:

48
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5.1.3 OCP formulation
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5.2 Multiobjective optimization 
(MOO)

• Multiobjective optimization deals with 
problems with at least 2 objectives

• Multiple objectives have to be optimized 
simultaneously

• They are conflicting performance indices 
(targets) for a given design
– Maximize profit, 
– minimize environmental impact, 
– minimize risk, etc.

54
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• The value of the objective vector f* is 
termed Pareto optimal when

• There does not exist another vector f 
such that

},,...2,1{  oneleast at for 
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*
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• i.e. does not improve at least one objective 
while the others remain at least the same

• Solution cannot be ‘dominated’
56

5.2.1 MOO Solution methods

• There are a number of methods to solve 
MOO problems.

• Here we will present only an intuitive 
approach that converts an MOO problem 
into an NLP problem – scalarization

• Aggregate objective function (AOF)
– Assign weights to different objectives
– Combine them into a cumulative one
– Subjective method as weights are based on 

experience of relative importance of 
objectives

57
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5.3 Bilevel optimization (BLP)

• A bilevel programming problem

– Contains a subset of the variables, 
which is required to be an optimal solution
of a second optimisation problem.

• Best demonstrated first by an application

62

5.3.1 Predicting Genetic 
Modificatons

• Modification of biochemical reaction (metabolic) 
pathways 

• To achieve an improved productivity of a given 
metabolite

• Using model-based techniques to propose 
alternative genes for knock-out

• Save experimental costs and time

63

• If we had kinetics for all the reactions in 
metabolic pathways, then
– Measure sensitivity of process output to given 

enzyme concentrations
– Knock-out genes that code for metabolites 

that
• Inhibit reactions on productive pathway
• Consume metabolic products needed in productive 

pathway

– For accuracy, we would also need to know 
genome control mechanisms (operons) on 
metabolic reactions

64

Such detailed kinetic information is not 
available

– As such, although can be viewed as ordinary 
chemical reaction pathways, 

– Special handling is needed to predict reliable 
modifications

65

• Idea:
– Use fluxes through metabolic pathways
– Use stoichiometry of reactions involved 

(known)
– Find native state of fluxes
– Predict redistribution of fluxes subject to a 

gene knock-out.
• Redistribution prediction is the key here
• Fluxes would redistribute according to 

which criterion?
Reference:
Burgard, A.P., Pharkya, P., Maranas, C.D., “OptKnock: A Bilevel
Programming Framework for Identifying Gene Knockout Strategies for 
Microbial Strain Optimization”, Biotechnology and Bioengineering, 84(6), 
647–657, (2003).

66
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• Thus a BLP is an optimization problem 
which has

– as one of the constraints being itself an 
optimisation problem (nested problem)

– We can have multilevel optimization problems 
(generalisation)

– BLP’s are solved by suitable transformation 
into NLP’s

68

5.3.2 BLP 
Formulation
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“God does not play dice with the Universe.” 
“The more success the quantum theory has, 

the sillier it looks.”  

Albert Einstein 70

5.4 Stochastic Optimization 
(Programming) (SP)

Optimization under uncertainty

• 3 sources of uncertainty in Chemical 
Engineering processes:

1. Input variability,
2. Disturbances,
3. Parametric uncertainty.

71

• Results in designs that select decision 
(design) variables so as to

– Optimize expectation of the objective index
– Satisfy exactly hard constraints
– Soften up constraints of qualitative nature into

• probability of satisfaction
• Satisfaction of their average value

• The above ingredients may be all present 
or in part in resulting formulations

72

5.4.1 SP Formulations
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• Main formulation:
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• Focusing on feasibility of the inequality 
constraints (regarding model equalities as 
hard constraints here)

– A choice of decision variables may not satisfy 
them for all realisations of the uncertain 
parameters

– We need to define a ‘looser’ type of feasibility
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• 1st relaxation: average value of constraints

0)],([)( ≤= ξxgExg

• 2nd relaxation: probability of satisfaction
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• Solution of general SP problems is often 
based on 

– Discrete samples

– Quadrature forms for integral evaluations

– Multiple scenarios realisations

– Resulting in standard NLP formulations

77

5.4.2 SP people…

E.N. (Stratos) 
Pistikopoulos
CPSE Director, Imperial College
London
Professor of Chemical 
Engineering, 
Department of Chemical 
Engineering
Imperial College 
London

Specialization
Optimization under uncertainty

E.N. (Stratos) 
Pistikopoulos
CPSE Director, Imperial College
London
Professor of Chemical 
Engineering, 
Department of Chemical 
Engineering
Imperial College 
London

Specialization
Optimization under uncertainty

78

Summary of formulations
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6. Important modern algorithms

80

“To raise new questions, new possibilities, to 
regard old problems from a new angle, requires 
creative imagination and marks real advance in 

science .” 
Albert Einstein

81

• There are 3 types of algorithms 
associated with all applications shown 
thus far, and with others that will be 
highlighted in this section:

1. Solution of large LP/NLP problems
2. Solution of Mixed-Integer problems
3. Deterministic Global Optimization

82

6.1 Interior Point Methods (IPM’s) 
for LP and NLP problems

• The most important problems first 
addressed by optimization methods were 
LP’s

• LP’s 
1. Have a convex feasible region defined by 

linear constraints and bounds (if the 
constraints are not conflicting)

2. The optimal point occurs at an extreme point 
of the feasible region, i.e. a vertex

3. There is only a single, global optimum

83

• Let us consider a general LP problem 
formulation to begin with:
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• George Bernard Dantzig 
(November 8, 1914 – May 13, 2005): 
The simplex algorithm for LP
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• Idea (simplex algorithm):

1. Find a way to identify vertices (elimination 
operations among the constraints)

2. Evaluate the objective function value
3. Find a way to identify adjacent vertices from 

current one
4. Evaluate a measure of how much each of 

these adjacent vertices would improve the 
objective function value

5. Move to one that improves the objective
6. Go To 2, until no improving vertices can be 

found � global solution found
86

87

The Best of the 20th Century: Editors Name Top 10 
Algorithms

from SIAM News, Volume 33, Number 4

1947: George Dantzig, at the RAND Corporation, creates the 
simplex method for linear programming .  

In terms of widespread application, Dantzig’s algorithm is one of 
the most successful of all time: Linear programming dominates 
the world of industry, where economic survival depends on the 
ability to optimize within budgetary and other constraints. 

(Of course, the “real” problems of industry are often nonlinear;
the use of linear programming is sometimes dictated by the 
computational budget.) 

The simplex method is an elegant way of arriving at optimal 
answers. Although theoretically susceptible to exponential 
delays, the algorithm in practice is highly efficient—which in itself 
says something interesting about the nature of computation.

The Best of the 20th Century: Editors Name Top 10 
Algorithms

from SIAM News, Volume 33, Number 4

1947: George Dantzig, at the RAND Corporation, creates the 
simplex method for linear programming .  

In terms of widespread application, Dantzig’s algorithm is one of 
the most successful of all time: Linear programming dominates 
the world of industry, where economic survival depends on the 
ability to optimize within budgetary and other constraints. 

(Of course, the “real” problems of industry are often nonlinear;
the use of linear programming is sometimes dictated by the 
computational budget.) 

The simplex method is an elegant way of arriving at optimal 
answers. Although theoretically susceptible to exponential 
delays, the algorithm in practice is highly efficient—which in itself 
says something interesting about the nature of computation. 88

• The question was: are there any 
polynomial time algorithms for LP

• Worst case scenario for simplex is 
exponential time -- e.g. O(2N)

• Some methods were found that would 
operate in polynomial time, O(Nk), but k
was large

• This was until 1979 and then 1984…

89

The polynomial time revolution

Leonid Genrikhovich
Khachiyan
(May 3, 1952 – April
29, 2005)

• The ellipsoid algorithm

90

World Renowned Computer Scientist Leonid G. 
Khachiyan Dies at 52

May 03, 2005

Khachiyan proved the existence of an efficient way 
to solve linear programming problems thought to 
be intractable until that time. 

His 1979 breakthrough dealt with the underlying 
mathematics, opening doors beyond linear 
programming to what is known as combinatorial 
optimization – finding the best of a finite, but 
often astronomically large, number of options. 
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• Narendra 
Karmarkar, "A 
New Polynomial 
Time Algorithm for 
Linear 
Programming", 
Combinatorica, 
4(4), 373–395, 
(1984).

• “affine scaling 
algorithm”

• Narendra 
Karmarkar, "A 
New Polynomial 
Time Algorithm for 
Linear 
Programming", 
Combinatorica, 
4(4), 373–395, 
(1984).

• “affine scaling 
algorithm”
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• Patent followed
• Software & 

hardware 
developed

• The algorithm was 
original and 
theoretically 
sound, but there 
was more to 
follow…

• Patent followed
• Software & 

hardware 
developed

• The algorithm was 
original and 
theoretically 
sound, but there 
was more to 
follow…
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• Gill, Philip E.; Murray, Walter, Saunders, 
Michael A., Tomlin, J. A. and Wright, 
Margaret H. "On projected Newton barrier 
methods for linear programming and an 
equivalence to Karmarkar’s projective 
method". Mathematical Programming 
36(2): 183–209, (1986). 

• A seminal paper in optimization in modern 
times

• Initiated the interior point / barrier method 
revolution both for LP and NLP
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• Effectively showed that Karmarkar’s method was 
equivalent to employing an old technique for 
NLP from the 1960’s
– Use of logarithmic barrier functions to “absorb” 

inequality constraints into objective function (similar to 
the use of penalty functions)

• Studied, among many others, by Anthony V. 
Fiacco and Garth P. McCormick
– Nonlinear Programming – Sequential Unconstrained 

Minimization Techniques Anthony V. Fiacco and 
Garth P. McCormick Published by Society for 
Industrial & Applied Mathematics, new edition 1987, 
originally published 1968.
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• Barrier transformation of inequality constrained 
problem into sequence of unconstrained 
problems (the following is called a primal IPM)
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• Algorithm

1. Start from a large value of the barrier 
parameter µ;
• problem does not feel influence of objective

2. Minimize unconstrained barrier objective 
function

3. Reduce µ, 
• small values of µ decrease the influence of the 

constraints, and this only becomes important 
when close to the boundary

4. Minimize barrier objective starting from 
previous minimizer

5. Go To 3, until sufficiently close to 
constrained minimum
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• Log- barrier methods only managed to solve 
small problems in the 60’s and 70’
– severe ill-conditioning as µ <<
– used optimization methods for general unconstrained 

optimization problems
– Converged the unconstrained subproblems

completely
• Were eventually abandoned 

– new methods emerged for NLP (Sequential Quadratic 
Programming, SQP),

– simplex was the only method for LP
• Since 1986, modern Newton methods were 

used, with advanced Linear Algebra codes 
employed

• To achieve polynomial time complexity:
– Each time µ is decreased perform only 1 Newton step
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• Small LP example

Adopted from: YouTube, InteriorPointMethodDemonstration.wmv
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• Transformation into an unconstrained sequence:

• In the following slides:
– µ starts at 100.0
– is reduced by a factor of 2.0
– for k = 10 iterations
– Points shown are minimizers (central path) 

not the path produced by IPM solvers
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109 110

end

111

IPM 
path

(not 
actual)
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• The primal barrier method has some 
shortcomings
– Primarily that it needs a feasible point to start
– Nonlinear inequality constraints cannot be 

guaranteed to remain feasible during 
iterations

• Almost exclusively replaced nowadays by 
the primal-dual barrier methods
– All NLP’s (and LP’s) can be cast into a 

“canonical form”, involving
– Equality constraints which can be violated
– Bounds (always satisfied, easily initialized)

113

• Canonical NLP problem:
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• IPM’s: a success story

– Solve problems of the order of 106 variables

– Converge within ~30 Newton iterations

• Regardless of problem size!

• Clear gains for large problems
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6.1.1 Applications of NLP

• All previously examined formulations may result 
into NLP’s to solve them

• Capabilities of NLP solvers nowadays can 
reach, with IPM, up to ~106 variables

• For convex problems there are reports of up to 
~109 variables

• Not only can optimization be used off-line, but 
on-line optimization is possible – next 
application

116

• Model Predictive Control (MPC)
• Applications

– Fast reliable online (real-time) optimizing 
controllers

– Supply chain management problems
– “Revenue management”

• Formulation
– Output: control actions at each time instant
– Input: current state of the system
– Can handle disturbances (uncertainty 

component)
– Objective: a mixture of control and economic 

criteria
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• Starting at current time, produce control actions 
for the next T steps:

119 120

6.1.2 NLP people…

Lorenz T. Biegler
Bayer Professor of Chemical
Engineering
Department of Chemical Engineering
Carnegie Mellon University

Specialization
Very large scale NLP, OCP,
Parameter Estimation

Lorenz T. Biegler
Bayer Professor of Chemical
Engineering
Department of Chemical Engineering
Carnegie Mellon University

Specialization
Very large scale NLP, OCP,
Parameter Estimation
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Andreas Wächter
Research Staff Member (Nonlinear 

Optimization)
Thomas J. Watson Research Center, 

Yorktown Heights, NY USA

Specialization
Very large scale NLP, 

developed IPOPT with L.T. Biegler
Mixed-Integer Nonlinear Programming 

(MINLP) solvers

Andreas Wächter
Research Staff Member (Nonlinear 

Optimization)
Thomas J. Watson Research Center, 

Yorktown Heights, NY USA

Specialization
Very large scale NLP, 

developed IPOPT with L.T. Biegler
Mixed-Integer Nonlinear Programming 

(MINLP) solvers
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6.2 Integer Programming (IP)

• Integer variables arise in many very 
important areas of industrial interest

– Either for counting whole numbers
– Or to capture embedded logic in 

mathematical process models

• Addressed early on, as soon as LP 
solvers matured

– Mixed-Integer Linear Programming (MILP) 
models and solvers

123

• Will focus here on binary variables, {0,1}
– General integer variables handled similarly

• Problem complexity � O(2N)
– Exponential explosion, combinatorial 

problems
– Explicit enumeration only possible for tiny 

problems

• Solved via Branch and Bound (B&B)
– Implicit enumeration method
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• Why rounding up relaxed LP does not 
work; consider simple MIP problem
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Adopted from: 
Practical Optimization: a 
Gentle Introduction
John W. Chinneck, 2010 
http://www.sce.carleton.ca/fa

culty/chinneck/po.html

126
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non- integer
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suboptimal
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For what will follow in this section, keep in
mind 2 things:
1. Adding a constraint to an optimization 

problem
– Will either do nothing to the solution (a loose 

constraint), 
– Or, will actively constrain the problem so that 

new optimum is worse than previous one

2. Fixing a variable to a given value 
– Will either do nothing (if at optimum…)
– Or, will result in a worse optimum (fixing a 

value is like adding an equality constraint)
128

• IP example

Adopted from:
Michael Trick's Operations Research Page, Associate Dean, Research and 
Professor, Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 
USA 15213, http://mat.gsia.cmu.edu/orclass/integer/node13.html
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• We begin by solving the relaxed LP

• Integrality constraints have been replaced 
by continuous bounds in the range 0-1
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• Branch and bound 

1. Can prove global optimality of a solution
2. Can be terminated in fewer iterations than complete 

proof of global optimality to save CPU cost
• Tolerance on difference of bounds provided

3. Provides rigorous bounds for the solution
4. Usually terminates before it becomes exhaustive

• Good formulations and constraint additions (cuts) help in 
this

5. Can be used on MINLP as well as MILP
• Usually direct B&B on NLP is not done (too expensive)

• Special approaches exist using iterations of MILP and NLP 
subproblems

• Cannot guarantee solution of nonconvex MINLP’s and may 
fail often

135

6.2.1 Applications of IP

• Major applications of IP can be classified 
in 3 main areas

1. Process Synthesis
2. Scheduling
3. Transportation problems 

136

6.2.1.1 Process Synthesis

• Key idea

– Include a sufficient number of alternative
• Processes
• Units
• Interconnections

– Have binary and continuous variables 
decide
• Which is in and which is out
• Connectivity
• Operating conditions

– The overall model is called a superstructure

137

• Example: synthesis of multicomponent distillation 
sequences 

138
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• Combinatorial complexity of the synthesis task
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• Example: Heat Integration

141

• Image taken from
Reference:

Papoulias, S.A., Grossmann, I.E., "A Structural Optimization 
Approach in Process Synthesis-II Heat Recovery Systems", 
Computers and Chemical Engineering, 7(6), 707-721, (1983).

• Formulated as a transportation 
(transshipment) problem
– Leads to LP/MILP formulations
– Completely equivalent to Pinch Analysis
– More flexible (forbidden matches)

142

• HEN network design:

–Formulated as a MINLP problem
• All possible stream splits
• All possible stream mixes
• All possible bypasses
• Nonconvex problem in general

143 144

• Image taken from

Reference:

Floudas C.A., A.R. Ciric and I.E. Grossmann, "Automatic Synthesis 
of Optimum Heat Exchanger Network Configurations", AIChE
Journal, 32, 276 (1986). 
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6.2.1.2 Scheduling

• Key ideas

– Multiperiod operations

– Binary variables (on/off) with indexing 
• {time, unit, process}, etc.

– Continuous or integer variables for 
quantities
• Flows
• Inventories

146

• Key areas

1. Batch scheduling, production planning

2. Supply-chain management

3. Scheduling of maintenance operations

147

• Example: Scheduling of cleaning actions 
in HEN’s subject to fouling

148

• Cleaning actions

149

• Crude inlet temperature

150

• Reference:
Smaili, F., Vassiliadis, V. S., and D. I., Wilson, “Long-Term Scheduling of 
Cleaning of Heat Exchanger Networks: Comparison of MINLP/Outer 
Approximation based Solutions with a Backtracking Threshold Accepting 
Algorithm”, Chem. Eng. Res. Des., Trans. IChemE, 80 (A6), 561–578, 
September (2002).
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6.2.1.3 Transportation problems
• Key ideas

– Belong to the area of network problems
– Binary variables (on/off) with indexing 

• Routing logic: {start, destination}

– Continuous or integer variables for 
quantities

– Can be multiperiod operations
– Can be multivehicle problems

• Key areas
– Travelling Salesman Problem (TSP)
– Vehicle Routing Problem (VRP)

152

• Example: 
TSP

1. List of cities
2. Start at some 

city
3. Visit all cities 

once
4. Return to 

starting city
– Closed circuit 

tour

153 154

155

• Example: 
VRP

1. List of delivery 
locations

2. Allocate tour to 
each vehicle

3. Capacity 
constraints for 
each vehicle

4. Time windows 
of delivery

5. Start at depot
6. Return to depot

156

6.2.2 IP people…

Ignacio E. Grossmann
NAE member
Rudolph R. and Florence Dean 
University Professor 
Department of Chemical Engineering
Carnegie Mellon University

Specialization
Large scale MILP and MINLP, 

formulation and solution methods

Ignacio E. Grossmann
NAE member
Rudolph R. and Florence Dean 
University Professor 
Department of Chemical Engineering
Carnegie Mellon University

Specialization
Large scale MILP and MINLP, 

formulation and solution methods



27

157

6.3 Deterministic Global 
Optimization

• We will focus on NLP problems
• Key ideas:

– Intervals (bounds) for the values of all 
variables

– Construction of convex underestimators of 
nonlinear (nonconvex) functions

– Estimation of lower bounds of the NLP
– Construction of a B&B tree based on upper 

and lower bounds of the NLP
– Fathoming of nodes with LB > UB
– Bisection of each variable interval at a time

158

• Original NLP • Relaxation 
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• Graphical example

160

161 162
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165 166

167 168

6.3.1 Protein Folding

• Prediction of 3D structure of 
proteins

• The “holy grail” in global 
optimization

• Proteins are linear polymers 
of amino acids

• 3D structure determines 
function
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• Structure determined 
by minimization of 
potential energy
1. bending energy 
2. bond stretching energy
3. bond torsion energy
4. electrostatic energies 

on amino acids

• Exponential number 
of local minima
– Number of amino acids

170

• Only a small proteins can be 
solved to guaranteed global 
optimality

• Capabilities of deterministic 
global solvers 
– Depend on problem size
– Particularly on number of 

nonconvex terms involved
• A mixture of approaches is thus 

used this highly nonconvex 
problem

• Great international research 
interest in deterministic global 
optimization
– Ab initio structure prediction
– De novo design of proteins

171

6.3.2 Deterministic Global 
Optimization people…

Christodoulos A. Floudas
NAE member
Stephen C. Macaleer '63 
Professor in Engineering and 
Applied Science
Professor of Chemical and 
Biological Engineering
Department of Chemical and 
Biological Engineering at 
Princeton University

Specialization
Nonconvex NLP and MINLP, 

formulation and solution methods
Protein folding

Christodoulos A. Floudas
NAE member
Stephen C. Macaleer '63 
Professor in Engineering and 
Applied Science
Professor of Chemical and 
Biological Engineering
Department of Chemical and 
Biological Engineering at 
Princeton University

Specialization
Nonconvex NLP and MINLP, 

formulation and solution methods
Protein folding
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Nikolaos V. Sahinidis
John E. Swearingen Professor of
Chemical Engineering
Department of Chemical Engineering
Carnegie Mellon University

Specialization
Nonconvex NLP and MINLP, 

formulation and solution 
methods

Nikolaos V. Sahinidis
John E. Swearingen Professor of
Chemical Engineering
Department of Chemical Engineering
Carnegie Mellon University

Specialization
Nonconvex NLP and MINLP, 

formulation and solution 
methods
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Leo Liberti
Professeur Chargé de Cours 
LIX, Ecole Polytechnique, 
Palaiseau, France

Specialization
Nonconvex optimization, 

combinatorial optimization

Leo Liberti
Professeur Chargé de Cours 
LIX, Ecole Polytechnique, 
Palaiseau, France

Specialization
Nonconvex optimization, 

combinatorial optimization
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Sven Leyffer
Mathematics and Computer 
Science Division at 
Argonne National Laboratory

Specialization
Theory and applications of NLP, 

MINLP and global optimization

Sven Leyffer
Mathematics and Computer 
Science Division at 
Argonne National Laboratory

Specialization
Theory and applications of NLP, 

MINLP and global optimization
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“God does not care about our mathematical 
difficulties. He integrates empirically.” 

Albert Einstein
176

7. Derivative-free optimization

177

“I think and think for months and years. 
Ninety-nine times, the conclusion is false. 

The hundredth time I am right.” 
Albert Einstein 178

• Other names for these methods

– Pattern Search (PS) methods

– Direct Search methods

– Derivative-free methods

179

• Very old methods (1950’s)

– Depend only on function evaluations
– Do not need gradients
– Can deal with nonconvex and discontinuous 

functions
– Generally very robust, i.e. don’t crash!
– Need many function evaluations
– Solve:
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• Resurgence in recent years
– Large scale application example: fitting (training) of 

neural networks (NN)

• Examples
– Nelder Mead method (amoeba)

• Storage O(N2)
• 1 function evaluation per iteration
• N+1 function evaluations to start

– Cyclic Coordinate Search (CCD)
• Classic method
• Storage O(N)
• 2N function evaluation per iteration
• 2N+1 function evaluations to start
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7.1 The CCD method

• Idea
– Search cyclically each coordinate in an up 

and down step
– When no better point found reduce stepsize

• Properties
– The simplest direct search method
– Many function evaluations in its classical 

incarnation
– Severely scale-dependent,

• Worse convergence than Steepest Descent
182

• Identical to the fractional factorial 
experiment design method

183

start

184

185 186
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187

end

188

7.1.1 Speeding up the CCD

• First we need to see how functions are 
represented in computer code (factorable 
functions)

• Arithmetic evaluation trees
– Directed Acyclic Graph (DAG)

• Used in Automatic Differentiation, where

for any number of variables

( ) ( ))(4)( xfOxfO x ⋅≤∇

189 190

• Idea:

– Since the CCD performs a variable-at-a-time 
perturbations around the base point

– Store intermediate evaluations in the tree 
during every evaluation

– Update only branches that change subject to 
a variable change

191 192
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195

•• 2 unsuccessful 2 unsuccessful 
EPSRC proposals EPSRC proposals 
for a Ph.D. projectfor a Ph.D. project
–– 20072007
–– 20092009

196

• 2010 Copenhagen (IT 
University) MSc 
Thesis
– Coding of function 

DAG speedup ideas
– Fortunately no work on 

the other topics 
identified in our earlier 
unsuccessful 
proposals

• Commercial software 
application made 
available by them 
though 

197 198

• Theoretical indicators of function 
evaluation speedups

– For a full cycle of the classic CCD method

– Operation counts and speedup ratios for

1. Balanced binary tree function types

2. Sum of bilinear terms
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• Sum of pure bilinear terms
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• Further work to be done:

– Does not matter even if we make CCD 
1000’s of times faster

1. Must ensure we can use it for high 
dimensionality

2. Explore inclusion of constraints in a useful 
way

3. Above all, deal with the severe scaling 
limitations
– Next and final slide
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Albert Einstein on research…

• To raise new questions, new possibilities, to 
regard old problems from a new angle, requires 
creative imagination and marks real advance in 
science.

• If we knew what it was we were doing, it would 
not be called research, would it? 

• Science is a wonderful thing if one does not 
have to earn one's living at it. 

• If the facts don't fit the theory, change the facts.

207

Mission of research

• Create the climate for new technologies and 
theories to emerge, advancement of society

• Train new researchers for the future, on a new 
topic, i.e. PhD students

• Train more experienced researchers in an 
advanced topic, a type of finishing school, i.e. 
postdoctoral researchers

208

209

8. Conclusions

Applications

Formulations

Algorithms

210

Applications

Formulations

Algorithms

Chemical & 
Biochemical 
Engineering

Common language, 
multidisciplinary 

across science and 
technology fields Applied Math

& Computer 
Science
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The optimization alphabet soup

MP

OCP

IP MIP

MILP

LP NLP

MINLP

BLPMOO SP

IPM CCD

DYNOPT

SIMPLEX PS

CVP DAG

CP

MPC
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Stephen P. Boyd
Stanford University

Samsung Professor in the School of 
Engineering

Professor, Information Systems Laboratory, 
Department of Electrical Engineering,

Professor (by courtesy), Department of 
Management Science and Engineering

Institute for Computational and 
Mathematical Engineering

Stephen P. Boyd
Stanford University

Samsung Professor in the School of 
Engineering

Professor, Information Systems Laboratory, 
Department of Electrical Engineering,

Professor (by courtesy), Department of 
Management Science and Engineering

Institute for Computational and 
Mathematical Engineering

Specialization
•Convex Optimization

Specialization
•Convex Optimization

214

• Convex optimization is the basis of all 
theory and methods

• The following is an outstanding book:

Convex Optimization
Stephen Boyd and Lieven Vandenberghe
Cambridge University Press, 2004

215

“The important thing is not to stop questioning.” 
Albert Einstein
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AAbbssttrr aacctt   
 
Optimization is, simply put, the science of finding the best solution amongst many 
feasible alternatives for general decision making problems.  Every engineer and scientist 
will most certainly have encountered optimization in some form or another: from 
parameter estimation and model fitting, to experiment design, and to more advanced uses, 
such as optimising processes and plant flow sheets, and more. 
 
A brief search through the Web will verify that there is an enormous volume of 
publications and books on the subject, regarding both applications and theoretical 
developments.  There is no doubt that optimization theory can be very difficult to grasp, 
if looked at the level a mathematician would use to develop a mathematical proof. 
 
However, this is not the intent of this presentation.  The aim is to present optimization as 
an indispensable tool in modern engineering science. The intended audience is anyone 
interested to learn about optimization: where it can be applied in our discipline, how to 
formulate appropriate models, and where the state-of-the-art has reached with modern 
solver codes.   
 
The level is such that the presentation will be accessible to undergraduate students at any 
year of the Tripos, whilst presenting the topic in a way that is useful to researchers as 
well.  There will be no complex mathematics, but some equations will be used: basic 
algebra, basic calculus and a lot of common sense!  Most of the ideas presented will be 
highlighted by applications in Chemical Engineering. 
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